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An asymptotic theory of solid cylindrical wind-tunnel-wall interference about 
subsonic slender bodies has been developed. The basic approximation used is one of 
large wall-radius to body-length ratio. Matched asymptotic expansions show that in 
contrast to the analogous two-dimensional problem of a confined airfoil, three regions 
exist. Besides the incompressible crossflow and nearly axisymmetric zones, a wall 
layer exists where reflection in the wall of the line source representing the body 
becomes of dominant importance. From the theory, the interference pressures are 
shown to be approximately constant for closed bodies. Also demonstrated is that 
D’Alembert’s paradox holds for interference drag of such shapes. Numerical studies 
comparing the exact theory to the asymptotic model which provides drastic 
simplifications, show that the latter can be used with reasonable accuracy to describe 
flows, even where the characteristic tunnel-radius to body-length ratio is as low 
as 1.5. 

1. Introduction 
Wind-tunnel testing provides a vital tool in the design and development of 

atmospheric flight vehicles. In spite of the tremendous progress in computational 
fluid dynamics (CFD), the wind tunnel is needed to simulate phenomena that are 
otherwise impossible to replicate. Especially difficult issues however arise in modelling 
of high angle of attack, V/STOL, hypersonic and transonic flows. A major concern 
in these and other situations is the treatment of wall interference. Because of the 
highly complex and nonlinear nature of this phenomenon, it represents a challenge 
to treat even with present CFD methods. This is particularly true in spite of the 
large body of knowledge built up concerning corrections in linear flow regimes. 
Accounts of these are given in Garner et al. (1966), Pindzola & Lo (1979) and Mokry, 
Chan & Jones (1 983). 

The transonic case gives rise to a particularly difficult environment. Some problem 
areas that contribute to the inaccuracy of wall-interference prediction are : 

(i) nonlinearity of the governing equation at  supercritical flow conditions ; 
(ii) nonlinearity of ventilated wall crossflow boundary conditions and difficulties 

in predicting or measuring them; 
(ii i)  wind-tunnel geometry features, such as finite ventilated wall length, diffuser 

entry and presence of a wake survey rake and its support; 
(iv) boundary layer on tunnel sidewalls, which causes the flow to deviate from 

two-dimensional test conditions when they are desired. 
In addition to these, other viscous effects such as shock-boundary layer 
interactions are relevant to interference assessment considerations. 

To deal with the nonlinear effects, computational procedures have to be utilized 



20 N .  D. Malmuth 

to treat the interaction of the test article with the walls. As a concurrent approach, 
techniques based on the measurement of flow quantities such as the pressure and 
velocity components are gaining acceptance. Mokry et al. (1974) and Lo (1978) have 
indicated early applications of this concept. Kraft & Dahm (1982) and Sickles & Kraft 
(1982) have developed an ingenious ‘two variable ’ technique using this idea for linear 
subsonic flows. The thrust is to employ experimental observables to account for 
deviations from the classical homogeneous wall-boundary condition, and as a means 
of indirectly treating viscous interactions with the wall and model. Within the 
theoretical framework used, it also bypasses the need for an analytical synthesis of 
the effective test-article shape. 

For the transonic case, there is a need for approaches that can reduce the number 
of input parameters necessary to compute the correction, shed light on the physics 
of the wall-interference phenomena, simplify the necessary computations, and be 
generalized in three dimensions, as well as unsteady flows. Asymptotic procedures 
such as those described in Lifshits & Fonarev (1978), Chan (1980), Blynskaya & 
Lifshits (1981), and Cole, Malmuth & Zeigler (1982) provide such advantages. 
Furthermore, they can provide valuable interactions with the other methods to 
suggest possible improvements, as well as deriving beneficial features from them. 
Moreover, nonlinear integral theorems, as well as the asymptotic structure of 
nonlinear integral equations arising in the matching scheme occurring in the 
asymptotic analysis, could be of use in the procedure of Kraft & Dahm (1982) and 
Sickles & Kraft ( 1982). 

Another possibility for accelerating the determination of the corrections and 
making a quick assessment of whether it is feasible to alter test conditions to make 
the experiment interference-free is to combine the asymptotic and computational 
procedures. This approach has merit in treating not only the so-called classical 
homogeneous wall-boundary conditions, but also those in which experimentally 
measured pressures are specified on control surfaces. Such a combination can simplify 
and reduce the computational intensity of the numerical problem through the 
simplification of the governing equations. In  addition, it can help to resolve difficult 
grid-generation issues present in a purely numerical formulation. For understanding 
the nature of the boundary conditions, matched asymptotics also can be useful, as 
indicated in Berndt (1977). 

Besides a substantial reduction in computational intensity from the purely 
numerical model, another simplification arising in a combined asymptotic and 
computational approach is that the analytical dependence of the interference on 
parameters such as the wall height can be determined. In fact, these parameters can 
even be separated out from ‘canonical ’ problems that express the essential structure 
of the interference phenomenon and interference loadings. This simplifies the 
determination of interference-free configurations. As an example, for the large- 
wall-height theories of Chan (1980), and Cole, Malmuth & Zeigler (1982), it  is the 
height-parameter dependence that can be obtained from the underlying asymptotic 
expansions. 

Application of asymptotic procedures to the incompressible and transonic wall 
interference for porous walls was first considered by Chan (1980) for two-dimensional 
flows. Therein, no attempt was made to obtain quantitative results with this theory. 
Studies for a free-stream Mach number near unity are described in Lifshits & Fonarev 
(1978), and Blynskaya & Lifshits (1981) using similarity solutions applicable in that 
regime. The case of solid walls in a transonic two-dimensional framework was 
described in Cole et al. (1982). Quantitative results involving a combined 
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FIQURE 1. Slender vehicle confined inside cylindrical wind-tunnel walls indicating Cartesian, 
cylindrical and spherical polar coordinates used in analysis. 

computational-asymptotic model were presented which gave indications of the 
accuracy of the theory and its usefulness for the determination of interference-free 
conditions. This is particularly important in concepts using ‘adaptive ’ or so-called 
‘smart’ wind tunnels in which the walls are configured to achieve near free-field 
conditions. As described in Lock & Beavan (1944), Ferri & Baronti (1973), Sears 
(1974), and Parker & Erickson (1982), the adaptive approach involves an iterative 
adjustment of the wall shape with a feedback loop involving a prediction of the 
wall-model interaction, which may be based on a computational simulation. It is 
therefore evident that the practical feasibility of the method depends on the rapidity 
of response of the predictive part of the smart-wall procedure. 

To handle practical conditions such as these with the asymptotic method, 
three-dimensional simulations are required. The analytical framework extending the 
analysis of Cole et al. (1982) to the three-dimensional transonic cases is given in 
Malmuth & Cole (1984). For the purposes of determining how the three-dimensional 
theory can be applied and of obtaining quantitative information, the case of subsonic 
flow will be described in this paper. This is important, since the theory has some 
similarities with that for the transonic case described in Malmuth & Cole (1984). 
Moreover, the underlying linear framework simplifies the study of the quantitative 
relationship between the finite-height interference problem and the large-height 
asymptotic approximation. In this manner, the range of applicability in terms of the 
height parameter can be carefully studied with possible implications for the transonic 
case. This is particularly important when moderate height to model-size ratios are 
considered to minimize viscous scale effect. 

2. Overview of approach 
The basic configuration to be treated is shown in figure 1, which shows a slender 

vehicle confined by cylindrical solid walls. A front view of this arrangement is shown 
in figure 2. Also, schematically indicated there is the basic asymptotic structure of 
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Wind-tunnel walls 

FIGURE 2. Front view of wind-tunnel model confined by cylindrical walls, showing regions of 
applicability of asymptotic expansions. 

the problem. If h represents the wall height, and c a characteristic model dimension, 
H = h/c  is a parameter which is to be considered large in the theory. I n  this 
approximation, three regions of dramatically different structure emerge. If the 
characteristic model thickness ratio 6 is small compared t o  unity, classical slender- 
body theory described in Cole (1968) holds to dominant order in a zone away from 
the walls. This region can be subdivided into subdomains denoted in figure 2 as the 
central and axis regions. I n  the former, the effect of asymmetry associated with an 
arbitrary slender aircraft at incidence becomes unimportant and it can be modelled 
as a line source. For the latter, crossflow gradients dominate, and the flow is harmonic 
in planes perpendicular to the free-stream direction. The effect of the walls in the 
central and axis regions is felt as a weak perturbation about the dominant 
slender-body flow field. The essential task is to predict interference pressure and 
loading associated with this wall perturbation. I n  this connection, a singular 
perturbation problem results, since the approximation of weak wall-induced pertur- 
bations becomes invalid near the walls. I n  this zone, denoted as the wall region in 
figure 2, the flow is dominantly that of a line source reflected in the walls. 

I n  this paper, the application of an asymptotic matching procedure will be 
demonstrated to  derive representations for the velocity potential @ in all three of the 
layers. This technique exploits the property that each of these representations has 
an overlap domain of validity. From this feature, i t  is possible to compare unknown 
elements near the interface of each of the zones and determine them. 

3. Formulation 
3.1. Exact problem (h  < ao) 

Before discussing the asymptotic theory, the ‘exact ’ problem will be treated. In  this 
paper, the term exact refers to finite height (h  < GO) walls interacting with a slender 
model. A more general situation refers to  non-slender models, which will be deferred 
to a future discussion. 
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3.2. Slender-body approximations 
The flow over a slender aircraft wind-tunnel model shown in figure 1 is considered 
in which the surface of the test article is given by 

(1) B = r-SF(x,  0 )  = 0, 

in cylindrical coordinates. In the notation of figure 1,  normalized coordinates, 

(in which c is a characteristic body length) are introduced, and the bars signify 
dimensional quantities. 

A representation of the velocity potential @ within incompressible small- 
disturbance theory is given by the following asymptotic expansion : 

(3) 
@ -  
- = x+ v(S) $(x, r ;  H ,  A) + .. ., 
U 

that is an approximate representation of @ in an ‘outer’ limit, 

(4) x , r , H = - ,  A=-fixed asS+O, 

which applies in some region away from the x-axis (axis or inner region), i.e. in the 
central region, previously identified and shown in figure 2. Here, U is the free-stream 
velocity, a = angle of attack, S = characteristic thickness ratio, q = velocity = V@. 
Although this formulation will be incompressible, all the arguments can be easily 
generalized to a subsonic Prandtl-Glauert framework. 

For solid cylindrical wind-tunnel walls, the expansion (3) anticipates that the flow 
becomes quickly axisymmetric away from an asymmetric body. As will be seen from 
matching, the zone of asymmetry is O(S). 

h a 
C 6 

The exact equation of the velocity potential is 

1 1 
r r 

A@ = @xx+-(r@r)r+T@ee = 0. 

The solid tunnel-wall boundary condition is 

a@ 
- (2, H )  = 0. 
ar 

Substitution of (3 )  into (5a )  and retaining like orders gives the problem 

A complete specification of this problem requires a matching condition with the axis 
region. To keep the body in view in the limit S + O ,  a strained coordinate r* = r /S  
must be held fixed in this limit. In the axis zone, the potential is assumed to have 
the expansion 

(7) 
@ 
- U = x+pi(S) $r(x)+pl(S)  $*(x, r*, 6 )  + ..., 
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which holds for the ‘inner’ limit 

x, r*, H ,  A fixed as S + O ,  (8) 
where, without loss of generality, the body length has been set to  unity. In (7)  the 
second term is a ‘switchback ’ term which has been inserted to facilitate matching. 
On substitution of (7)  into (5a) ,  the equation governing +* can be obtained as: 

As indicated in Malmuth & Cole (1984), Cole (1968) and Cole (1972), the formulation 
for (9) is completed by the condition of flow tangency and matching. The former is 
written as 

where q = velocity = V@. The most general boundary condition for which 
aq5*/aO = O(a+*/ar) is obtained if 

Further, (10) implies that 

q . V B  = 0, (10) 

pU1 = 82. 

where n is the normal to  the boundary for the harmonic crossflow problem associated 
with (9) and (1  1 )  shown in figure 3. In the notation of figure 1, this is an x = constant 
cross-section of the test article. Assuming no yaw and lateral asymmetry, i.e. 
$*(r* ,O,x)  = $*(r*, - O ; x ) ,  the most appropriate solution of (9) and ( 1 1 )  is 

g,*(x) cosne +* = 9 * ( x )  lnr*+g*(x)+ Z r*n . 
n-1 

Equation (12) provides the essential relation in matching the inner and outer 
expansions. For matching, an intermediate variable is introduced so that inner and 
outer solutions can be written in an overlap domain of common validity. The purpose 
of this step is to determine unknown elements in each, such as 9’*(x) in (12) and pj 
in (7). If the order of magnitude relation 

S e y(6) e 1 ,  

holds, where S 6 r(S) signifies O ( r ( S ) )  > 0(6), then an intermediate limit in which 

is fixed as 81.0, 

is defined. The outer expansion written in these intermediate variables is 

and the inner is 

where in (14) it  is assumed for purposes of matching that 
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L B = r * - e x ,  e) = 0 

FIQURE 3. Crossflow plane geometry. 

By Gauss' theorem, 9"*(x) = S(x)/2x, where 

and s is the arc length along boundary B in figure 3. The quantity S(x)  is the local 
cross-sectional area. For a closed contour 

S(X) = - PdO. 
2 0  5" 

On comparison of (14) and (15), matching gives 

(18) I pi = d2 lnd v(S) = Sa, 

s'(4 $4 = P*(2) = -9; = g ( x ) .  
2x 

Equations (16) and (18) provide the necessary completion of the specification of the 
outer problem. It should be noted that these results are identical so far to those 
obtained for symmetrical unconfined bodies of revolution obtained in Cole (1968). 
The effects of asymmetry represented by the multipole last term in (12) are higher 
order in (15). As will be seen, the significance of this result is that the interference 
effect of the walls on a confined asymmetric body is axisymmetric. 

On the basis of the matching condition, (16) can be written in the flux form 

s'w lim (r&) = -. 
r+o 2n: 

The solution of (6) for 9 can be obtained as a line source reflected in the solid 
cylindrical wind-tunnel walls. The exponential Fourier transform method applied in 
Malmuth & Cole (1984) can be used to obtain a Green function, satisfying appropriate 
conditions for this representation. The line source is a convolution of this Green 
function. Accordingly, if 0 < x < 1,  

0 = II+IZ, (19a) 
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~ R ~ I , ,  = -I’ S([) d[ Irn eiIc(%-f) Ko(kr) dk 
0 -m 

In  (19), I , ,  KO and K ,  signify modified Bessel functions. Writing the solution of the 
inner problem embodied by (9) and (11)  as 

$* = $+g(x), 

g = Il(4 +921(x) +g,,(x), then, 

where the method of Cole (1968) can be used to show that 

1 1 

n2gz,(x) = S’(E)d5jw cosk(x-[){--*}dk, k2H2 211(kH) 
0 0 

4R s: 1 
2R 

-g&) = -S(x)  ln2+- S f ( [ )  sgn(x-6) lnIx-[ld[. 

Using Bernoulli’s theorem, the pressure coefficient C,, on the body is ‘given by 

where 

For an axisymmetric body, i.e. F, = 0, and 

In accord with the previous discussion, the free-field pressure coefficient Cg, 
corresponds to g = g,, in (20). Therefore, the interference pressure ACpB = CpB- Cg, 

In summary, (21) is an area rule for wind-tunnel-wall interference from slender-body 
theory. It indicates that  the interference pressure on the body depends only on x, 
H and S(x ) ,  and is independent of the body cross-sectional shape variation. 

3.3. Large height (h-t  m) theory 
3.3.1. Centrul layer 

In  this region, the asymptotic representation for q5 is assumed to be 

$central = POW) 40cx7 r )  + P l ( H )  q5,@> r )  + * * * 3 

for the central layer limit 

r fixed as H + m .  

Substitution of (22) into (6u) gives 
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and a similar process applied to the boundary condition (16’) gives 

Under the assertion (to be validated by matching) that ,uo = 1 ,  and $o represents the 

free field, 1 P,(cosw)- 
Rn+i I*,  (26) q30= Iz2 = -- z 

47I n-0 

where the P, are Legendre polynomials, o is the polar angle defined in figure 1, and 
the 2, represents area derivative moments. Equation (26) is inconsistent with the wall 
boundary condition (5  b) .  Accordingly, another asymptotic expansion is required in 
the vicinity of the walls. 

3.3.2. Wall layer 
The perturbation potential near the wall is assumed to have the following form : 

= Bo(H)Q)O(Xt,rt)+E1(H)Q)l(xt,rt)+ * - - ,  (28) 

(29) 

which is valid in the wall-layer limit 
X r rt = - 

H ’  
fixed as H - t o o .  X t  = H’ 

By the substitution procedure previously described, the wall-layer approximation 
can be shown to satisfy the following hierarchy: 

where 6(zt) and &+(r t )  are the full and half delta functions. The forcing term in (30a) 
is associated with the singular behaviour plo z -S(1)/4nRt+ ... as Rt+O, where 
Rt = R/H.  This is based on matching requirements with q30. The  lo solution is similar 
to that associated with the transonic theory discussed in Malmuth & Cole (1984). It 
is a reflection of point source of strength proportional to the base area S(1) in the 
solid cylindrical tunnel wails, and is given as 

M = M O + M 1 ,  (31 b )  

1 
Mo = -- J cos kztKo(krt) dk, 

27e 0 

2 FLM 177 
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Using methods given in Malmuth & Cole (1984), these integrals can be approximated 
for R t j -0 ,  w fixed to give the following singular representation of tp, in that limit: 

where 

tp, = S ( 1 ) { - m + a , + b 0 R ' P P , ( c o s w ) + . . .  1 

a0 - - %2 1; { b - K } d k  = 0.12955, 

k2K1(k) dk = 0.063409. 

The integrals in (33a) and (33b) are convergent, can be evaluated once and for all 
numerically, and are independent of zt and rt. 

The dominant term of (32) is a source and the next two terms represent effects 
associated with reflections of this singularity in the walls. Based on preliminary 
matching considerations, stronger singularities such as a dipole and quadrupole are 
required for the dominant terms of the next higher-order approximations. These are 
obtained from differentiating (32) with respect to 2. They have reflections in the walls 
given by the higher-order terms .of these derivatives. In accord with these ideas, the 
singular behaviour of $wall as Rt+O is 

1 - 1  
$wall = S(1) [ m + a o +  b, Rt2P,(cosw) + . . . 

Also based on preliminary matching considerations, switchback terms are interposed 
between the dominant and second-order terms in (22) so that 

(35) 

The added switchback terms (denoted herein by fractional subscripts) are to be 
determined by matching. In anticipation of this step, a suitable representation for 
the dominant wall-induced perturbation of the central region perturbation potential 
$1 that satisfies (24) and (25b) exactly is 

(36) 

It is significant to note that the analytical determination of in (36) illustrates a 
key distinction between the incompressible case of this paper and the transonic one 
treated in Malmuth & Cole (1984). Therein, $1 satisfies a 'variational' equation which 
is linear perturbation about the nonlinear dominant (free-field) 9, approximation, 
and can probably only be solved numerically. The variational equation is essentially 
the same as that arising in the transonic lifting-line theory developed by Cook & Cole 
(1978). It can have discontinuous coefficients associated with shocks in the dominant 
9, approximation. 

$central = do +pi $4 +pi $3 +PI $1 + ... . 

d1 = A1,R2P,(cosw)+All R cosw+A,,. 

3.3.3. Matching of central and wall layers 
Following the procedure indicated earlier, unknown elements in the dwall and 

$central representations are determined by writing each in terms of a suitable 
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intermediate variable and finding common terms. For this purpose, the appropriate 
intermediate variable is 

where 16 7 6 H .  
Rq = R / r ( H ) ,  (37) 

The representations of $wall and $central are thus 

0 0  0 

where @ is a dummy term added to elucidate the matching arguments. 

them, it can be seen that the following matchings apply: 
On comparison of the various terms in (38) and (39) with the circled labels above 

@ + Q @ - @  @-a @ - @ @ + @  
€0 = 1/H. pi = 1/H, A,, = S(1) b,, B = -Il, 

$4 = S( l )a , .  p1 = 1 / P .  y =  1/P. 

pi = $i = 0. 

8-0 @+@ @++@ 

Since there is no constant term in the dipole reflection response to the dipole involving 
2 (i.e. c, = 0), 

A,, = 2Bb,, c = 11 2 2, 

El = 1 / P .  

A,, = 2b, C = b,I,. 
A,,  = -27, b,. 

3.3.4. Matching of central and axis layers 

about $central just obtained, the secondary ( H +  m) expansion for $* in (7 )  is 
Based again on preliminary matching requirements which use the information 

$*(x, T* ; H )  = $ t ( x ,  r * )  + q ( H )  4; + T, (H)  q5: + . . . . (40) 
From the previous section, 

Introducing the intermediate variable rC, where 

6 6 [(a) 4 1, 
2-2 
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then the velocity potential in the central and axis layer is, assuming that 

Comparing (41) and (42), the matchings are: 

Letting 

lim #1 = g,(z) = b 0 { S ( 1 ) z 2 - 2 f , x + ~ 2 } .  
r-to 

substitution of (40) into (9) and (11) gives 

4 4 :  1 = 0, 

* %=,. 
an 

On the basis of previous work, 

(44) 

(45) 

(46) 

(47 1 

and go(4  = 922(4* 

In addition, 

4; = 91, (49) 
solves (45) and (47) and satisfies the asymptotic matching conditions as r*+ co. 

various regions are : 
Summarizing the previous results, the expansions of the velocity potential in the 



Wind-tunnel-wall interference on subsonic slender bodies 31 

3.3.5. Axis region 

r* = r / 6  fixed as 6+0, H - t  a. 

3.3.6. Central region 

I 1 1 
H P  q50(x , r )+ -ao+-$ l (x , r )+ . . .  , U 

r fixed as S+O,H+a.  

3.3.7. Wall region 

l I  
-= @ x + 6 2 { ~ W ( x t , r t ) + ~ ~ + . . .  1 , 
U 

xt = x/H, rt = r/H fixed as 6+0, H+ co, 

where is given by (44) and (49), $,* solves (45), (46) and (48), $o is given by (26), 
and by (44). Using the method of Malmuth & Cole (1984) involving the derivation 
of (32), as a check, it can be shown that g51 in (50b) can be obtained from the exact 
result for $ in (19). 

3.4. Free-jield and approximate interference pressures 
From (20) and the subsequent discussion, 

Thus the approximate theory states that interference pressure is constant for closed 
bodies to dominant order, is independent of the body cross-sectional shape distri- 
bution, and varies linearly with x for open bodies. Equation (52) indicates that the 
interference pressure falls off rapidly with increasing H due to the strong three- 
dimensional relief about the confined slender body. 

3.5. Drag 

For an axisymmetric body with a blunt base having a base pressure assumed to be 
the ambient value P,, the drag coefficient CD based on the base area is 

Based on (52) and (53), the approximate interference drag coefficient ACD for a body 
of revolution is 

= o(1). (54) 
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S, (wind-tunnel wall) 

S+ = S- = * H a  

FIGURE 4. Control cylinder for interference drag determination. 

Thus, to the order of approximation considered, and with the assumed base pressure, 
the interference drag coefficient of a confined open axisymmetric body has no 
dynamic component, but has merely the static value. A similar result holds exactly 
for open bodies of arbitrary shape with a cylindrical afterbody at  infinity in a free 
field as described in Batchelor (1967). 

To determine whether (54) holds for bodies of more general shape and study the 
o symbol in (54), a momentum theorem analysis is made on the control cylinder of 
figure 4. If S,  and S- are the areas of the end faces of the cylinders, S, its curved 
impervious face corresponding to solid walls, and the flow over a slender body in the 
interval 0 < x < 1 of cross-sectional area S, = S( l )  with a cylindrical afterbody for 
x > 1 is considered, then the momentum theorem for the drag D is 

(55) 

where P is the pressure, u is the x-component of the flow velocity on the end faces, 
and the arguments & co corresponds to these surfaces. Now, an open body of the type 
considered behaves as a confined source of strength S( 1 ). Accordingly, 

D = P( - co ) S- - P( co ) S+ + p, [u2( - 00 ) 8- - u2( 00) 8+], 

u -PS(l) 
- -x l+-  +... asx+&co. 
U 2xH2 

In accord with Bernoulli’s equation and these relations, the drag force D is 

(56) 
approximately p, uwa( 1) +..., 2xH2 

D = P, d2S(1)+ 

where P, and pa, are the ambient pressure and density. This shows the blockage 
correction to (54). Denoting P- and U- as the pressure and velocity at  the upstream 
face S- of the control surface of figure 4, the exact result for the drag is from Cole 
(private communication, 1984) 

A = &  
xH2 ’ 

(57 ) 

which is consistent with the O(s4) magnitude of the interference drag determined by 
the approximate theory given in (56), and checks (56) allowing for the confined source 
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X 

FIQWE 5. 0, exact and A, approximate interference pressures for cone (F = z), H = 1.5. 
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X 

FIGURE 6. 0,  exact and A, approximate interference pressures for cone ( P  = z), H = 4. 

flow described previously. These results show that D’Alembert’s paradox applies to 
closed bodies confined by solid walls. For ventilated walls, this is not correct due to 
the momentum flux out of the walls. 

4. Validations of approximate theory 
From the analytical results presented in this paper, it is evident that the 

asymptotic theory gives a dramatic simplification of the exact theory. To understand 
its field of application for not-so-large values of H, calculations were performed with 
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FIGURE 7. Exact and approximate interference pressures for parabola of revolution (F = 22 (I  -2)). 
0, exact, H = 1 ;  0,  approx. H = 1 ;  0, exact, H = 1.5; ., approx. H = 1.5; 0, exact, H = 2; 
+, approx. H = 2; V, exact, H = 4; v, approx. H = 4. 

simple equivalent bodies of revolution that could be considered as representative of 
more complex shapes. The trapezoidal rule was used to evaluate the rather 
formidable-looking integrands associated with the exact interference theory given 
by (21). These integrations were more tractable than expected, since the rapid 
(exponential) decay of the Bessel function quotient quenched out any oscillations 
from the sine factor before they could be a problem for large t .  Numerical results 
demonstrating the applicability of the scheme in H space are shown in figures 5-7. 
In figure 5 the exact and approximate expressions from (21) and (52) are compared 
for a confined cone. In  spite of the extremely low value of H for the H+ m theory, 
the approximate representation tracks the exact value surprisingly well. For H = 4, 
the agreement between both representations is perfect, as shown in figure 6. A similar 
comparison for a parabolic arc of revolution is shown in figure 7, indicating the same 
kind of excellent agreement. This behaviour is probably related to the rapid 
three-dimensional decay of the flow disturbances from slender bodies. It is anticipated 
that the asymptotic theory for analogous transonic flows may have similar elasticity 
in its H validity, providing that the supersonic bubble is not too close to the wall 
region. 

5. Conclusions 
As asymptotic theory of subsonic flow over slender bodies confined within 

cylindrical solid wind-tunnel walls has been developed. The theory indicates that the 
interference pressure on the body is constant for closed bodies. For open bodies, it 
is a linear function of the streamwise coordinate. This variation upstream and 
downstream of the body should be modified to account for the non-uniformity at 
upstream and downstream infinity. For the interference drag, D’Alembert’s paradox 
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holds for closed bodies confined by solid walls. For open shapes, the modification of 
the static drag is proportional to the product of the base area and blockage ratio. 
Numerical studies oriented toward assessing the practical application of the asymp- 
totic theory show that it can be used for height-to-chord ratios close to unity with 
surprising accuracy to predict interference pressures on slender bodies. 
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